(1)要比较的事物和对比较的要求必须适合上述小学生在比较方面的年龄特点。例如,低年级要多利用直观,并且多加引导;高年级则要更多地放手让学生进行抽象事物的比较,遇到较难的知识仍可利用直观。开始着重比较明显的相异点,以后逐步练习比较细微的差异点。 (2)明确要比较的项目,必须在同一种属性、特点或关系上进行比较。有时在几方面有相同点或不同点,就要引导学生分项依次进行比较。例如引导学生比较长方形和正方形时,先比较它们的边,再比较它们的角,然后综合起来说出它们有什么相同点和不同点。 (3)要引导学生抓住本质的属性。特别是分析不同点时,往往有很多非本质的不同点,不要在这些方面花很大力量。例如,方程解应用题和用算术方法解应用题,在解题时有很多相同点和不同点,但最重要的不同点是:用方程解时把未知量当作已知量直接参加列式,算术解法则把未知量作为解答的目标而不参加列式。学生明确这一点,就抓住用方程解应用题的本质。 (4)对于易混的概念和法则要着重比较它们的相异点。例如1分米、1平方分米和1立方分米,要通过比较,使学生明确它们的实际长短或占空间的大小,弄清它们分别是长度单位、面积单位和体积单位,它们分别与1米、1平方米和1立方米的进率是10、100和1000,从而获得明确的长度单位、面积单位和体积单位的概念。 3.培养初步的抽象、概括能力。 抽象是在思维中揭示出事物的本质特征,舍弃其非本质特征。有时本质或非本质特征要根据研究的方向和目标而定。例如:下面的几个形体,可以分别研究它们的形状特征。大小特征,颜色特征或制作的材料特征等。 概括则是在思维中把某些事物所抽取出的共同本质特征结合起来,并推广到同类的事物上去。例如,研究大小不同、放的位置也不同的三角形,抽取出它们的共同本质特征,并得出一般结论,即三角形都由三条线段围成的,都有3个角。这就是概括。 显然,抽象、概括与分析、比较、综合有着密切的联系。它们是在分析事物的各自特征的基础上,舍弃其中一些非本质的对我们没有意义的特征或属性,分出本质的对我们有意义的特征或属性,并且通过比较不同的事物,找出它们的共同特征或本质属性,再加以综合。因此可以说,这几种逻辑方法是相互联系、相互渗透的。 抽象、概括在小学数学中有着广泛的应用。任何一个数学概念都是抽象、概括的结果。例如,认数3时,先数3个杯子,数的时候舍弃了杯子的形状、大小、颜色等特征,区分出数量来;再数3支铅笔、3个球,也同样舍弃其他的特征,只区分出数量的特征。经过比较,可以看到这三种物体具有共同的数量特征,即都是3个,于是概括出数目3。认识形也是一样,先拿一个小圆筒,舍弃它的数量、大小、颜色等特征,而抽取出它的形状特征。那么就看到它有上下两个圆面,还有一个侧面是曲面。如果再拿几个小圆筒,大小、颜色虽然不同,但是形状上具有同样的特征,那么就根据它们具有形状的共同特征把它们归为一类,做出概括。 小学生的抽象、概括能力也因年龄和年级的不同而有不同的层次和水平。据心理学家研究,低年级学生主要处于直观形象水平阶段。如认数1、 2、 3, 4、 5……以及认识加、减、乘、除运算的含义等,都是通过操作、直观而抽象、概括出来的。学生在抽象、概括时,他们往往只注意到或概括出事物的直观形象和外部特征。例如,在一年级教学圆柱的认识,有的学生说它的形状是“直上直下的,像个大柱子,圆乎乎的。”在教师的指导下,学生逐步能离开直观,理解一些抽象的数概念,概括出简单的计算法则。中年级学生则发展到形象抽象水平阶段。其特点是:学生注意和区分事物的直观的和外部的特征逐渐减少,而注意和区分事物的内部的和本质的特征逐渐增加。到了高年级,进一步发展到初步的本质抽象水平。其特点是:大多数学生能对事物的本质特征或属性以及事物的内部联系和关系进行抽象、概括。例如,给学生出示几个不同的菱形(来教过),四年级除了一些学生能抽象概括出它们都有 4个角或 4条边外,有 8%的学生能指出它们的四边相等或对角相等。而五六年级除了一些学生能抽象概括出它们都有4个角或4条边外,有21%的学生能指出它们的四边相等或对角相等,还有33%的学生能指出它们是对称图形或有对称轴。高年级学生还能初步理解用字母表示数。但是学生的本质抽象水平的发展还是不完全的,对于离学生生活远的事物或高度的抽象、概括,还感困难。例如分数、小数、质数、合数的本质特征,还需要通过操作或直观来理解。 教学生进行抽象、概括时要注意以下几点: (1)要通过直观、具体的材料进行抽象。抽象是与具体相对应的,因此要按照由具体到抽象的原则,提供丰富的直观、具体的材料,并引导学生抽象。直观、具体的程度可根据学生的年龄特点以及平时积累的感性经验多少而定。低年级要多运用一些直观、具体的材料,到高年级遇到过于抽象的概念,如质数、合数、分解质因数、分数等概念,也要注意适当运用直观教具。 (2)注意抽象、概括的科学性。进行抽象、概括时,要注意引导学生区分出事物的本质特征,舍弃其非本质特征,以便达到正确理解所学的知识。另外要注意从多个事物进行抽象、概括,避免从一个事例作出概括,以防止得出片面的不正确的结论。即使是通过几个事例进行抽象概括,有时也难免得不到正确的一般概括,因此所举的事例要具有典型性、代表性。例如,低年级教学长方形时,要出不同的放置位置的长方形,特别要注意出现斜着放 误认为只有底边是水平放置的长方形才是长方形。 (3)进行抽象、概括之后还要注意具体化。具体化和抽象、概括是相反的过程,在抽象、概括出事物的本质的一般特征之后,还要引导学生回到单独的个别的事物上去,以作为对抽象、概括出的结论的应用和验证。通过这一活动还可以加深学生对所学的知识的理解,使学生的思维生动、灵活。例如,教学乘法的初步认识后,可以出现算式3×4,让学生用小圆片摆出这个算式表示的是几个几。另外,如果有些差生对抽象、概括出的概念的本质特征不易理解,还要再回到具体的事例中去以帮助理解。 (二)培养学生初步的判断、推理能力 前面讲的是思维的过程和方法,但人们在进行思维时,以什么形式表现出来呢?这就是通常所说的概念、判断和推理。无论逻辑学或心理学,都把这三者看作基本的思维形式。 1.重视概念的教学。 概念是对事物的一般属性和本质特征的反映形式。任何一个概念都是对事物进行抽象、概括的结果。概念与知觉、表象不同。知觉、表象都是事物的具体的映象,具有直观的性质。而概念具有抽象、概括的性质。 概念是用词来表达的,它以词的意义的形式而存在。在小学数学中概念有很多,也都是用词来表示的,如整数、分数、小数、约数、倍数、直线、长方形、圆等。 (1)概念的定义。 任何一个概念都反映事物的本质特征,通常叫做概念的内涵。例如,平行四边形这个概念,它的内涵就是两组对边分别平行的四边形。一个概念还反映了某一类事物的总和或范围,通常叫做概念的外延。例如,三角形的外延就是指所有的三角形,其中包括锐角三角形、直角三角形和钝角三角形。可以看出,概念的内涵是说明概念的含义的,概念的外延是说明它的适用范围的。这两者相互联系、相互依赖。每个概念都有确定的内涵和外延,不能混淆。 概念一般都要加以定义。通过定义来揭示概念所反映的事物的本质特征。这在小学数学中例子也很多。给概念下定义的方法也有多种,下面举出几种常见的下定义的方法。例如,两组对边分别平行的四边形叫做平行四边形。(关系定义,说明平行四边形是四边形中的一种,它的本质特征是两组对边分别平行。) 已知两个数的和及其中一个加数求另一个加数的运算叫做减法。(也是关系定义。) 一条线段绕它的端点旋转一周所成的角叫做周角。(发生定义,说明这种角的由来。) 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量。(条件定义,通常有“如果……那么……”) 此外,在某些情况下,概念不好下定义,就采取描述、说明的方法。这在小学数学中还比较多。例如,物体表面或围成平面的大小叫做它们的面积。(描述) 把一个合数表示成若干个质数的乘积,叫做分解质因数。(说明、解释) 1、2、3、4、5……叫做自然数。(指出概念的外延) 有些初始概念是不定义的,如集合。(在小学不讲) (2)小学生对概念的掌握。 小学生掌握概念有一个逐步提高的过程。低年级学生掌握的概念大部分是具体的;如果是比较抽象的概念,那么必须是通过直观可以了解其本质特征的。据心理学家研究,儿童对概念的掌握的水平是与其概括的发展水平相适应的。低年级学生掌握概念的水平主要是描述型和功用型,如果给概念下定义,学生还较难接受。另外,学生往往对概念的本质特征不很清楚,也不易全面掌握。例如,有的学生误认为,只有水平放置的长方形才叫长方形。中年级学生可以初步理解和掌握一些概念的本质特征,但是由于抽象、概括水平的限制,对某些概念的本质特征的理解和掌握还有困难,而且往往不能脱离直观形象的支持。例如,中年级学生掌握亿以内的数比较容易,对亿以上的数就比较困难。分数、小数的概念,还需要通过操作、直观来逐步理解它们的含义。另据研究,四年级学生能识别垂线、直角三角形、平行四边形、正方形、梯形、圆这6种图形的平均正确率可达62.3%,但是能说明图形特征的平均正确率只有28.3%。这说明要掌握几何图形的本质特征还是比较难的。到了高年级,学生能够掌握一些概念的本质特征,理解一些概念的抽象定义。据测试,五年级能正确掌握所学平面图形特征的可达50%。但是有些概念还需要通过直接的经验或感性的表象来掌握。例如教学分数时,仍需要借助一些直观材料来说明概念的意义。高年级学生还能理解和掌握一些概念间的逻辑联系或概念系统,如平行四边形、长方形和正方形之间的联系和区别。但对概念的本质特征的理解和掌握也有不完全、逻辑性差等缺点,有时甚至发生混淆。例如,学生往往难以区分质数、互质数和质因数的含义,在计算时还往往用错术语。 (3)教学数学概念时要注意的几点。 ①正确说明所教概念的意义,首先教师要弄清概念的意义。要把数学的科学概念与日常生活中的概念的含义区别开来。例如“角”在数学中指的是平面的角,与日常生活“角”的含义不同。 要防止不适当地扩大或缩小概念的内涵或外延。例如教学“整数”不能只包括0和自然数。 教学概念的意义时避免同一词语的反复。例如不能说“求两个数加在一起是多少叫做加法”。 不能任意解释一个概念。例如教学体积概念时,用粉笔盒说明装多少支粉笔就是体积的大小。 要注意在理解的基础上给学生分析概念的定义。例如教学平行四边形,首先说明它是一个四边形,再说明它与一般的四边形的差别在于两组对边分别平行。 ②注意形成概念要符合儿童的认知特点。由于数学概念都是抽象的,一般要按照如下的认知顺序进行教学:动作、感知→表象→概念、符号。如教学数目3,先出数量是3的各种实物图(可让学生自己摆),然后出点子图,最后出数字“3”。教学质数和合数,可以先引导学生对20以内数的约数的多少进行分析,找出它们的特点,然后进行分类,把2、3、5、7、11、13、17、19归为一类,把4、6、8、9、10、12、14、15、16、18、20归为另一类,最后概括出质数和合数的概念。 ③注意概念的具体化。概念的形成是把具体事物进行抽象化的过程,形成概念以后还要回到具体化,以利于学生正确理解并加深理解概念的意义。例如教学乘法的含义后,给出一个乘法算式,让学生用小棒摆出它表示的是几个几。教学分数的意义后,让学生举实例说明它的含义。 ④注意概念间的联系和区别。这对于加深学生对概念的理解有重要的作用。 了解概念的联系也就是了解概念间的关系。概念间的关系一般有以下几种。 从属关系:如四边形、平行四边形和长方形的从属关系可以用下图表示。 同一关系:说明两个概念完全相同。如等边三角形和等角三角形,质数和素数。 矛盾关系:如加法和减法,正比例和反比例。 并列关系:如直角三角形、锐角三角形和钝角三角形,奇数和偶数。 交叉关系:如等腰三角形和直角三角形,可以用下图表示。 了解概念间的区别,就是要精确地掌握概念的内涵,弄清各概念的本质特征有什么不同。如长方形的周长和面积,要通过操作和直观使学生弄清楚各指长方形的哪一部分,用的计量单位和计算方法各有什么不同。 对于一些有联系的概念,到适当时候可以引导学生把所学的概念纳入概念系统中去,使知识系统化。例如,整数四则运算通过下表可把知识系统化。 ⑤重视概念的应用和巩固。牢固地掌握一个概念,必须是能识别和应用它,理解概念的意义,而不是一字不差地背出概念的定义。 为了使学生识别和理解概念,可以出现如下的练习,让学生判断是否正确。 最小的自然数是0。( ) 角的两边越长,角就越大。( ) 为了使学生学会应用概念,可以出现如下的练习。 用加法的意义说明下面的应用题为什么用加法算: “小明有15张邮票,小强比小明多3张,小强有多少张邮票?” 能整除120的质数有_____。 2.培养初步的判断能力。 判断是对事物具有某种特征或属性的肯定或否定的思考。例如,“自然数和0都是整数”,“含有质因数3的数不能化成有限小数”,都是判断。很明显,判断是用语句来表达的。而语句是由词联结成的,因此判断是由概念联结成的。也可以说,判断是反映概念间的联系的形式,它反映一个概念是不是包含于另一个概念之中。例如,“减法是加法的逆运算”这个判断,它首先说明减法是一种运算 上一页&nbs 上一页 [1] [2] [3] [4] [5] 下一页 2/2 首页 上一页 1 2
|